Kevin J. McDonald, PhD

kevinjm@bu.edu • 774-452-6597 • www.kevinmcdonald.org

Summary

- Driven engineer with experience leading robot hardware projects from conception to multiple publications
- Expert in the design of soft robotic mechanisms using magnetorheological fluids
- Helped secure \$500,000 in grant money for a multi-year project and led a team to meet regular goals
- Five years as most senior student in lab, with experience mentoring younger and older students of all levels

Education

PhD in Mechanical Engineering	Boston University	GPA: 4.00	May 2023
MS in Mechanical Engineer	$Boston \ University$	GPA: 4.00	January 2022

Research: Morphable Biorobotics Lab (*Principle Investigator: Dr. Tommaso Ranzani*) **Dissertation:** Enabling Complexity in Fluidically Actuated Soft Robots via Onboard Control Hardware **Classes:**

- Continuum Mechanics
- Nano/Microelectronic Device Technology
- Precision Machine Design and Instrumentation
- Polymers and Soft Materials
- Simulation of Physical Processes
- Vision, Robotics, and Planning
- Applied Mathematics in Mechanics
- Medical Robotics

BS in Mechanical Engineering	Northeastern University	GPA: 4.00	May 2018
Minors in Electrical Engineering and Math			

Research: Expeditionary Robotics Lab (*Principle Investigator: Dr. Samuel Felton*) **Honors:**

- President's Award (2017, 2018)
 - Awarded to the top 10 students by GPA in the junior and senior class, university-wide
- Sears B. Condit Award (2018)
 - Awarded to the top 100 graduating seniors by GPA, university-wide
- Engineering Class Marshal at Commencement
 - Honor granted to the top graduating senior (or several if tied) in each college by GPA
- Ferretti Scholarship (2016, 2017)
 - Awarded to the top 10 sophomores and juniors in the Mechanical and Industrial Engineering department by GPA
- University Honors Program
- Dean's List (All Semesters)

Academic Experience

2

Graduate Researcher in Morphable Biorobotics Lab, Boston University

Project Management

- Co-authored a grant application resulting in a \$500,000 award from the Office of Naval Research
- Organized and mentored PhD, masters, and undergraduate students on a project with diverse technical areas
- Led weekly technical meetings to direct progress toward ONR reports, project reviews, and publication goals

Research

- Developed new hardware for controlling pneumatic and hydraulic soft robots with smart fluids and magnets
- Integrated novel control hardware, sensors, and actuation mechanisms into multi-degree of freedom robots
- Disseminated research through publication in highly ranked journals
- Presented at top conferences including the International Conference on Robotics and Automation and the International Conference on Soft Robotics
- Constructed testing platforms for hardware validation using rapid prototyping of fixtures designed in Solid-Works and test code written in LabVIEW and Python
- Simulated mechanical and electromagnetic systems in COMSOL to inform design decisions
- Conducted extensive data analysis using MATLAB
- Visualized results via schematics designed in Adobe Illustrator and videos edited in Adobe Premiere

Lab Management

- Promoted an inclusive lab space that celebrated diversity of nationality, gender, and background
- Selected equipment and materials from external suppliers to furnish a new lab space
- Oversaw lab cleanliness and safety through role as Lab Safety Officer
- Trained students on lab processes and served as the lab expert on experiment design and equipment upkeep
- Provided technical expertise for projects in the lab and for collaborating groups

Teaching Experience

Boston University, Boston, MA

Graduate Student Teacher - Fluid Mechanics

- Independently prepared and presented three weekly hour long lectures presenting exercises to reinforce key course topics
- Independently prepared and presented review lectures in advance of exams for a class of over 60 students
- Held weekly office hours to teach concepts to students in need of extra help
- Codeveloped and revised course exams

Boston University, Boston, MA

Graduate Student Teacher - Mechanical Engineering Senior Design

- Assembled, tested, and assisted students in the use of SLA and FDM 3D printers for a class of over 100 students
- Held several office hours a week in the build space to help students in various aspects of mechanical design
- Assisted in the administration of purchase orders for over 20 teams of students

Fall 2019

Spring 2019

2018 - 2023

Publications

Journal Articles

L. Gaeta, **K. McDonald**, L. Kinnicutt, M. Le, S. Wilkinson-Flicker, T. Ranzani, "Magnetically induced stiffening for soft robotics," *Soft Matter*, vol. 19, no. 14, pp. 2623–2636, 2023.

J. Rogatinsky, K. Gomatam, Z. H. Lim, M. Lee, L. Kinnicutt, C. Duriez, P. Thomson, **K. McDonald**, and T. Ranzani, "A collapsible soft actuator facilitates performance in constrained environments," *Advanced Intelligent Systems*, vol. 4, no. 10, p. 2200085, Oct. 2022.

K. J. McDonald, L. Kinnicutt, A. M. Moran, and T. Ranzani, "Modulation of magnetorheological fluid flow in soft robots using electropermanent magnets," *IEEE Robotics and Automation Letters*, vol. 7, no. 2, pp. 3914–3921, Apr. 2022.

K. McDonald and T. Ranzani, "Hardware methods for onboard control of fluidically actuated soft robots," *Frontiers in Robotics and AI*, vol. 8, pp. 1–19, Aug. 2021.

K. McDonald, A. Rendos, S. Woodman, K. A. Brown, and T. Ranzani, "Magnetorheological fluid-based flow control for soft robots," *Advanced Intelligent Systems*, vol. 2, no. 11, pp. 1–8, 2020.

A. Rendos, S. Woodman, K. McDonald, T. Ranzani, and K. A. Brown, "Shear thickening prevents slip in magnetorheological fluids," *Smart Materials and Structures*, vol. 29, no. 7, pp. 1–6, Jun. 2020.

Conference Proceedings

K. J. McDonald, L. Kinnicutt, A. M. Moran, and T. Ranzani, "Modulation of magnetorheological fluid flow in soft robots using electropermanent magnets," *IEEE International Conference on Robotics and Automation*, May 2022

A. Gupte, L. Kinnicutt, **K. McDonald**, and T. Ranzani, "A soft ionic sensor for simultaneous pressure and strain measurements," 2020 IEEE International Conference on Soft Robotics (RoboSoft), pp. 266–271, 2020.

C. Liu, C. M. Gomes, **K. J. McDonald**, L. F. Deravi, and S. M. Felton, "A chemo-mechatronic origami device for chemical sensing," *Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems*, pp. 1–7.

Other Presentations

L. Kinnicutt, J. Lee, J. Oden, L. Gaeta, S. Carroll, P. Sultania, A. Rathi, L. Zi Heng, C. Orakwue and K. McDonald, "A Soft Laparoscopic Grasper for Retraction of the Small Intestine," *The 15th Hamlyn Symposium on Medical Robotics*, London, UK, June 26, 2023

L. Kinnicutt, A. Pathak, T. Bohac, A. Peng, C. Taglietti, C. Lee, R. Rauf, J. Lee, L. Zi Heng, J. Rogatinsky, **K. McDonald**, S. Mori Carroll, J. Siracuse, and T. Ranzani, "Minimally Invasive Soft Robotic Prototypes Provide Variable Occlusion in Simplified Aortic Flow Model," *American Heart Association Resuscitation Science Symposium*, Chicago, IL, November 5, 2022

K. McDonald and T. Ranzani, "Comparison Criteria for Hardware Methods for Onboard Control of Fluidically Actuated Soft Robots," lightning talk at the New Directions for Simplified Control of Soft Robots workshop, 2022 *IEEE International Conference on Soft Robotics (RoboSoft)*, Edinburgh, UK, April 4, 2022

A. Rendos, **K. McDonald**, T. Ranzani, and K. A. Brown, "Designing magnetorheological fluids for soft robotics," *Material Research Society Fall Meeting*, December 2, 2019, Boston, MA

Professional Experience

Boston Micromachines Corp., Cambridge, MA

July 2017–December 2017

Mechanical Engineering Co-op

- Independently developed a package for a new MEMS deformable mirror for adaptive optics
- Designed PCBs and rigid-flex circuits to interface MEMS devices with high voltage drivers
- Designed metal fixtures for electron beam PVD and interfacing of MEMS mirror with optical testbeds
- Measured physical and electromechanical properties of untested MEMS die using interferometry
- Developed and tested wire bonding recipes for new MEMS product
- Troubleshooted and bug-tested proprietary software in Windows and Linux

The Charles Stark Draper Laboratory Inc., Cambridge, MA

July 2016–December 2016

Microfabrication Process Engineering Co-op

- Collaborated on the development of proprietary high density microcircuits and other microelectronic devices
- Worked in several specialized labs, including Class 10, 100, and 1000 cleanrooms and static sensitive areas
- Programmed and operated manual and semi-automated measurement and production equipment
- Interfaced with technicians, inspectors and engineers to discuss results of analyses with the goal of quality improvement and cost reduction
- Developed standard operating procedures for laboratory tasks including rapid thermal annealing and weekly maintenance tracking

Selected Technical Skills

- Design, fabrication, and testing of soft robotic actuators and sensors
- Synthesis, modeling, and applications of smart fluids, especially magnetorheological fluids, for developing novel actuators and sensors
- Experimental design including the development and troubleshooting of hardware test fixtures and control software in LabView and Python
- Data acquisition with Arduino, Raspberry Pi, and National Instruments DAQs
- Data analysis in MATLAB
- 3D design and rendering in Solidworks and Fusion360
- Rapid prototyping via additive manufacturing, laser cutting, and plastics processing
- Modeling and simulation of electromagnetic, mechanical, and fluidic systems via finite element analysis in COMSOL
- PCB design in Eagle
- Graphic design and figure preparation with Adobe Illustrator and Photoshop
- Video editing in Adobe Premiere